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Abstract 

Incident solar radiation is the major source of energy over land surfaces.  It controls the 

exchange of matter and energy between the land surface and the atmosphere. Downward 

shortwave radiation (DSR) and its visible portion, photosynthetically active radiation (PAR) over 

land surfaces, are required by almost all land surface models. Previous satellite products of DSR 

and PAR typically have coarse spatial resolution that cannot meet the requirements of land 

process modeling and data analysis. 

Funded through the NASA ROSES 2013 program, operational global high-resolution (5km) land 

DSR (MCD18A1) and PAR (MCD18A2) products were recently developed from MODIS data. 

The retrieval is based on an efficient look-up-table approach that can work at the native 

resolution of MODIS data. The original algorithm was developed by Liang et al. (2006) for 

estimating PAR from MODIS data. After a decade of algorithm refinements and improvements, 

the current algorithm has become mature and robust. 

The algorithm has been validated extensively in various previous studies. Although it is intended 

for generating high-resolution (~km) products, the validation results have shown accuracy 

generally better than that of the existing coarse-resolution products. Recent validation of the 

actual MCD18A1 and MD18A2 products using ground measurements suggests that the new 

high-resolution MODIS land surface radiation products are reliable and highly accurate. DSR 

and PAR have the overall coefficients of determination of 0.91 and 0.92 respectively. MCD18A1 

has a root mean square error (RMSE) of 90 W/m
2
, bias of 17 W/m

2
. MCD18A2 has a RMSE of 

39 W/m
2
, bias of 9 W/m

2
. 

This Algorithm Theoretical Basis Document (ATBD) provides a summary of the theoretical 

description and the physical basis for the algorithms of generating MCD18A1 and MCD18A2 

products, as well as the evaluation of the algorithms and the products.  
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1. Introduction 

Solar radiation is the major source of energy over land surfaces and controls the exchange of 

matter and energy between the Earth’s surface and its atmosphere. Incident solar radiation over 

land surface is a key variable in the  study of  a variety of scientific and application issues related 

to climate changes, hydrologic, bio-physical and bio-chemical modeling, solar energy 

applications, and agriculture (Liang et al. 2010).  

Altering surface shortwave radiation forcing will lead to significant adjustments in surface 

temperature, moisture and fluxes during the resulting complex land surface thermodynamic and 

hydrological processes. This, in turn,  will affect the surface heat and moisture budget as well as 

biological productivity (Wild 2012). As the driving force, downward shortwave radiation (DSR) 

and its visible portion, photosynthetically active radiation (PAR) over land surfaces are required 

by almost all land surface models. 

Radiation, temperature, and water interact to impose complex and varying limitations on 

vegetation activity in different parts of the world. Nemani et al. (2003) estimated that radiation 

limits vegetation growth over 27% of Earth’s vegetated surface. Almost all ecosystem models 

contain the physiological processes involved in photosynthesis and stomatal regulation that 

control the exchange of water vapor and carbon dioxide (
2

CO ) between vegetation canopies and 

the atmosphere. Gross primary productivity (GPP) of vegetation canopy is often calculated using 

the production efficiency models:  

PARFAPARGPP   ,        (1) 

where  is the radiation efficiency factor defined by different models, FAPAR represents the 

fraction of PAR absorbed by the green vegetation which has been a satellite product from many 

sensors (Baret et al. 2007; Myneni et al. 2002; Xiao et al. 2015), but PAR is not. Cramer et al. 

(1999) made a model intercomparison and found that many widely used models utilize the 

production efficiency principles, such as CASA (Potter et al. 1993), SiB (Sellers et al. 1986) and 

GLO-PEM (Prince and Goward 1995). MODIS PSN/NPP product algorithm (MOD17) is also 

based on this formulation (Zhao et al. 2006). All these models require PAR data. Cai et al. (2014) 

recently demonstrated that high-resolution accurate PAR inputs can significantly improve the 

GPP calculation.  

Terrestrial evapotranspiration (ET) on average uses approximately 59% of the surface net energy 

(Trenberth et al. 2009), which is largely determined by surface DSR. In fact, many satellite ET 

algorithms, including the MODIS ET (MOD16), directly depend on DSR (Wang and Dickinson 

2012). To initiate, calibrate, diagnose, and validate these algorithms and models, accurate inputs 

of DSR are imperative. 

Extraterrestrial downward shortwave radiation (at top-of-atmosphere (TOA)) is mainly governed 

by solar zenith angle (SZA) and the distance between the Sun and the Earth. In addition to SZA 

and the Sun-Earth distance, DSR or PAR that reaches the land surface is largely determined by 

absorption and scattering of the atmospheric constituents. Additionally, multiple scattering 

between the atmosphere and the surface also contributes to their variability. Given the high 

dynamics and spatial variations of these two parameters, satellite remote sensing is the only 

practical and effective way to map global DSR and PAR. 
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The World Meteorological Organization (WMO) specified requirements of DSR products for 

three types of applications (See Table 1), but no existing radiation products can meet these 

requirements. The current global radiation datasets derived mostly from satellite observations 

have much coarser spatial resolutions, such as Clouds and the Earth's Radiant Energy System 

(CERES) product (Wielicki et al. 1998) at a spatial resolution of 140km from 1997 to present, 

the International Satellite Cloud Climatology Project (ISCCP) product on a 280 km equal-area 

global grid from 1983-2008 (Zhang et al. 2004), the Global Energy and Water Cycle Experiment 

(GEWEX) surface radiation budget (SRB) product at a spatial resolution of 1° x 1° from 1983-

2007 (Pinker et al. 2003). 

Table 1. WMO observation requirements for surface downward shortwave radiation. NWP: 

Numerical Weather Prediction, AOPC: Atmospheric Observation Panel for Climate. 

(https://www.wmo-sat.info/oscar/variables/view/50, last visited on August 9, 2017) 

Applications Uncertainty 

goal (Wm
-2

) 

Uncertainty 

threshold 

(Wm
-2

) 

Horizontal 

resolution 

goal (km) 

Horizontal 

resolution 

threshold (km) 

Global NWP 1 20 10 100 

Agricultural Meteorology N/A N/A 1 20 

Climate-AOPC 5 10 25 100 

Another issue is that current insolation products do not have the accuracy required for land 

surface applications (Liang et al. 2010). Hicke (2005) found that global mean National Center for 

Environment Prediction (NCEP) solar radiation exceeded that from ISCCP by 16%, and locally, 

relative differences were up to 40% in the mean and 10% in the trend of solar radiation and 

varied in sign across the globe. Gui et al. (2010) compared three satellite-based surface insolation 

datasets (GEWEX-SRB, ISCCP-FD, and CERES-FSW) and demonstrated large biases in 

Southeast Asia, the Tibet Plateau, and Greenland.  For example, the R
2
 value of the validation 

results in the Tibet Plateau for CERES-FSW data is only 0.35. In a more recent study assessing 

existing satellite DSR products, Zhang et al. (2015) found that satellite products agree better with 

surface measurements at monthly than at daily time scale but all four satellite products analyzed 

overestimate DSR by approximately 10 W m
−2

. 

Methods to estimate incident shortwave radiation fluxes from satellite data can be roughly 

divided into two categories according to whether products of atmospheric and surface parameters 

or data of top-of-atmosphere (TOA) radiance are the major source of information. 

DSR and PAR can be accurately calculated by radiative transfer models (RTM) under the 

approximation of plane parallel atmosphere if surface BRDF and vertical profile of atmosphere 

constituents such as gas molecules, aerosols and clouds are known. This constitutes the basis of 

the first type of methods. These methods can be further divided into (a) directly running RTMs 

and (b) using parameterization. To improve computational efficiency of running RTMs, the 

simple two-stream approximations for multiple scattering or even simpler schemes are typically 

used. Computation is speeded up significantly with the simplified models, but they usually are 

inaccurate in calculating multiple scattering that dominates when the atmospheric optical depth is 

large (hazy or cloudy) and/or the surface is very bright (snow/ice). An alternative approach is by 

parameterizing to simplify radiative transfer processes and obtain approximation of DSR and 

PAR (Qin et al. 2015; Tang et al. 2016).  
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The second types of methods directly estimate DSR or PAR from TOA radiance data, which can 

avoid error propagation resulted from uncertainties in input atmospheric parameters. For 

example, Liang et al. (2006) developed a look-up-table (LUT) based method algorithm to 

estimate incident PAR over land surfaces from time series data of MODIS TOA radiance. It is 

specifically designed to achieve the high accuracy and keep a simple form of the model. This 

algorithm was then extended to estimate PAR from AVHRR data (Liang et al. 2007). Liu et al. 

(2008) revised this method by using MODIS surface reflectance product (MOD09). Wang et al. 

(2010) presented a new algorithm for integrating instantaneous PAR values from MODIS data to 

produce a daily PAR product. Zheng et al. (2008) extended the MODIS PAR algorithm  to 

GOES data. Lu et al. (2010) adapted the MODIS algorithm to another geostationary satellite 

GMS5 data to map incident PAR in China. Zhang et al. (2014) further improved this algorithm 

suitable for global production. Through these algorithm refinements and improvements, this 

approach is becoming mature and robust. 

Funded through the NASA ROSES 2013 program, we optimized the research and prototype 

codes and operationally implemented this LUT-based algorithm. The global high-resolution land 

DSR (MCD18A1) and PAR (MCD18A2) products are being generated from the MODIS data. 

Such high resolution products of DSR and PAR are essential for serving as upstream input for 

MODIS NPP and ET products, driving high resolution land surface models and investigating 

scientific questions of surface radiation at local or regional scales. Cai et al. (2014) recently 

demonstrated that high-resolution accurate PAR inputs can significantly improve the GPP 

calculation. The high resolution products also play an vital role in validating coarse resolution 

data sets, such as reanalysis products (Zhang et al. 2016). 

This Algorithm Theoretical Basis Document (ATBD) provides a summary of the theoretical 

description and the physical basis for the algorithms of generating MCD18A1 and MCD18A2 

products, as well as the evaluation of the algorithms and the products.  

2. Algorithm descriptions 

The basic framework of the algorithms was presented by Liang et al. (2006). It was for 

estimating incident PAR from MODIS data. The algorithm first estimates surface reflectance 

from multi-temporal imagery and then appraises PAR flux for each imagery. The basic 

procedure consists of two steps: (1) determination of the surface reflectance from observations 

under the “clearest” atmospheric conditions in a temporal window or reprocessed from the 

MODIS surface reflectance product; and (2) calculation of incident PAR from the determined 

surface reflectance and TOA radiance/reflectance by searching the LUTs. The LUTs are pre-

calculated from comprehensive simulations of atmospheric radiative transfer models, storing 

radiative transfer parameters as a function of atmospheric visibility index (aerosol or cloud 

optical depth) at different viewing geometries. Theoretical background and practical 

consideration on this algorithm are described in details as follows. 

2.1 Background 

Satellite TOA observations contain information from both the atmosphere and the land surface. 

Under the assumption of Lambertian surfaces, TOA spectral radiance recorded by a satellite 

radiometer can be approximated by the following formula (Liang 2004)： 
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                   ,                            (2)  

 where ),,(
0

I is TOA spectral radiance for a given viewing geometry (solar zenith angle 0


( )cos(
00

  ), view zenith angle  ( )cos(   ), and relative azimuth angle ). The first part of 

the left side ),,(
00

I  represents path radiance and the second part contains the contribution 

from the surface and the atmosphere as well as the multiple scattering between the surface and 

the atmosphere. s
r  is surface reflectance, 0

E  is the extraterrestrial solar irradiance, )(
0

 is the 

total transmittance (direct plus diffuse) in the solar illumination direction, )( is the total 

transmittance (direct plus diffuse) in the sensor viewing direction. 

Similarly, incident solar radiation can also be formulated as a function of atmospheric and 

surface parameters. Surface incident solar radiation depends mainly on atmospheric properties, 

but also to a lesser extent on surface reflectance. It can be demonstrated by the following formula 

for calculating downward spectral flux )(
0

F

 

at the solar zenith angle 
0

  over a Lambertian 

surface (Liang 2004): 

)(
1

)()(
000000





 


 E

r

r
FF

s

s     ,                                (3) 

where )(
00

F is the downward flux without any contributions from the surface, the definition of 

other parameters is the same as that of Eq (2). It is clear that the surface contribution to the 

incident flux mainly depends on 
s

r . If the atmosphere is very clear (i.e.,  is small) or the 

surface reflectance 
s

r  is low, the surface contribution to the incident flux is relatively small. 

All radiometric variables are functions of wavelength. Integration of the downward spectral 

fluxes from Eq(3) will produce broadband fluxes, such as DSR and PAR. PAR use the spectral 

range of 400 nm to 700 nm and DSR uses 300 and 2500nm: 


700

400
00

)()( 


dFPAR    ,                    (4a)  


2500

300
00

)()( 


dFDSR   .                    (4b) 

2.2 MODTRAN simulations 

Instead of online calculation of various atmospheric functions in Eq 2-4 on the pixel basis that 

can be computationally very expensive, they are tabled (as LUT) offline as a function of 

atmospheric visibility index (aerosol or cloud optical depth) at different viewing geometries. 
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Two LUTs are created through radiative-transfer simulation by MODTRAN. The first table is 

used to compare the actual with simulated TOA reflectance to derive atmospheric conditions; the 

second table is used to estimate instantaneous surface radiative fluxes using atmospheric 

conditions derived from the first look-up table. Detailed information on the parameters used to 

create the two LUTs during radiative-transfer simulation is summarized in Table 2.  

Table 2. Summary of key parameters used in running MODTRAN simulations for generating a 

look-up table (LUT). For each combination of these parameters, three surface reflectance values 

are specified in MODTRAN. MODTRAN outputs at each wavelength interval for these three 

surface reflectance are used to solve for the parameters used in Eq(2) and Eq(3). 

Input parameters  Values 

Solar zenith angle 0°, 15°, 30°, 45°, 55°, 65°, 75, 85°, 90° 

View zenith angle 0°, 20°, 40°, 60°, 80° 

Relative azimuth angle 0°, 30°, 60°, 90°, 120°, 150°, 180° 

Surface altitude 0.0, 1.0, 2.0, 3.0, 4.0, 5.0 (km) 

Aerosol type Rural aerosol 

Cloud type Altostratus cloud 

Aerosol loadings (visibility) 5, 10, 20, 30, 100 (km) 

Cloud extinction coefficient 92.0, 60.0, 40.0, 20.0, 10.0, 5.0, 3.0, 2.0, 1.0, 0.5, 0.2, 

0.05 (km
-1

) 

Water vapor amount Default value 

Ozone amount Default value  

For each value of visibility index at each specific sun-viewing geometry, three surface 

reflectance values are specified (0.0, 0.5 and 0.8) for the range of wavelengths in MODTRAN. 

MODTRAN outputs at each wavelength interval for these three surface reflectance are used to 

solve for the parameters used in Eq(2) and Eq(3). These quantities are then integrated with the 

MODIS sensor spectral response functions over wavelength to get the average values for each 

wave band. 

2.3 Creating and searching LUTs 

Once the two LUTs have been generated through radiative transfer simulation, DSR and PAR 

can be derived. The workflow for searching the look-up tables is as follows. First, TOA 

reflectance or radiance is calculated using the digital numbers (DNs) for the corresponding bands 

from actual satellite observational data. Then surface reflectance data are derived from MODIS 

land-surface reflectance data (MOD09A1). Next, TOA radiance is calculated for each 

atmospheric condition, ranging from the clearest conditions (high surface meteorological range) 

to the cloudiest conditions (high cloud extinction coefficient) under various geometries using the 

LUT generated at the satellite level. Then the actual TOA radiance derived from the selected 

sensor bands is compared with the calculated radiances under all atmospheric conditions and 

various geometries using the TOA LUT to retrieve the atmospheric index, which is defined as 

the index of the atmospheric conditions in the study. Finally, DSR and PAR can be obtained 
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using the retrieved atmospheric index and the derived surface reflectance under various 

geometries using the LUT at the surface level.  

In the initial algorithm, the approach of “clearest” observations was used to estimate surface 

reflectance for each pixel. This approach needs stack of time series data and also suffers from the 

issues of surface changes and cloud shadow.  Satellite products of surface reflectance were used 

in a follow-up study (Liu et al. 2008) and proved to be able to generate robust results. Here, the 

MODIS land surface reflectance product (MOD09A1) is used in the current algorithm. 

A temporal filter was applied to the MOD09A1 time series to reduce the effects of residual 

clouds on surface reflectance and fill data gaps caused by persistent cloud coverage (Tang et al. 

2013). The core of this temporal filter algorithm is a time series cloud detection (TSCD) 

algorithm. It is based on the relative stability of ground reflectance and the sudden variations in 

reflectance that result from cloud cover. 

The algorithm first searches the clear-sky reference data, and then discriminates clouded and 

unclouded pixels by detecting a sudden change of reflectance in the blue wavelength and spectral 

correlation coefficient at the pixel level. For each date D, the clear reference pixel contains the 

most recent cloud-free reflectance obtained in the time series before date D. A pixel is labeled as 

clear for the time series criterion if 

1133
)()()( LDDKDD

rrbb
  ,       (5)  

96.0)()cos(),(
22,


rDDr

DDKLDDcorr
r

 ,     (6) 

where )(
3

D
b

  is the surface reflectance of the pixel in the blue band at date D , 
r

D  is the date of 

the most recent clear data before, and ),(
r

DDcorr  is the normalized spectral correlation 

coefficient, where 
r

DD ,
  is the spectral angle between )( D and )(

r
D . 

1
K , 

1
L , 

2
K , and 

2
L  are 

coefficients whose threshold values depend on 
r

DD  . 
1

K  and 
2

K , which characterize the 

change of the spectra and correlation coefficient with time, are related to the land type and 

season alteration. 
1

L  and 
2

L  represent the effects of BRDF and noise. 

Two kinds of clear sky cases need to be determined: the first clear sky in the time series, and all 

subsequent clear skies. Once the first clear sky is determined, the subsequent clear sky is easier 

to obtain. In order to save computing time, a subsequent pixel will be labeled as clear if Eq (5) 

and (6) are satisfied. Then, the reference clear sky will be substituted with the new clear sky. 

Searching for subsequent clear sky will continue until a new clear sky could not be found for 

more than 80 days. At this time, the object may have changed suddenly because of land cover 

change or because of cropping, for instance, so the idea is to restart the search for a new first 

clear sky since the last clear sky. 
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2.4 Water vapor correction 

Water vapor absorbs infrared radiation and the influence of water vapor on the estimation of the 

surface radiation is significant, especially in the infrared band under cloud-free conditions. The 

water vapor broadband and spectral transmission parameterization functions have been reported 

in the literature. During the radiative transfer simulations through MODTRAN, the default 

amount of water vapor was utilized. 

To reduce the water vapor influences on DSR estimation, a simple normalized water vapor 

transmittance method was used for the water vapor correction of the solar radiation at the surface. 

The correction method is applied only to the DSR estimation (not the PAR estimation) because 

water vapor absorption primarily occurs in the infrared spectrum. 

The water vapor transmission rate index 
w

T  can be estimated using the following equation 

(Psiloglou et al. 2000): 

MuMu

Mu
T

w

814.5)3.1191(

014.3
1

644.0


 ,        (7) 

where M is the optical atmospheric mass, and u  is the water vapor amount in cm. The optical air 

mass M  can be obtained as according to the following equation: 

16364.1
))07995.96(50572.0(cos



ss

M   ,        (8) 

where 
s

  is the solar zenith angle. After the water vapor transmittance is calculated, it is 

normalized by the following equation: 

)(/)(
dwww

uTuTR  ,           (9) 

where 
w

R  is the normalized water vapor transmittance, )(uT
w

is the water vapor transmittance at 

the water vapor amount u in cm, and )(
dw

uT is the water vapor transmittance at the default 

amount of water vapor. The estimated DSR at the surface is then corrected using the normalized 

water vapor transmittance
w

R . 

2.5 Sensitivity study 

To better evaluate the interactions of these atmospheric input variables in the LUT, a sensitivity 

analysis of the atmosphere profiles, ozone level, water vapor amount, surface elevation, and 

aerosol model was performed.  

The six standard atmosphere profiles (tropical, midlatitude winter, midlatitude summer, sub-

Arctic winter, sub-Arctic summer, and 1976 US standard) were employed with specified 

atmosphere variables. The influences of the atmosphere profiles on the estimation of DSR and 
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PAR are illustrated in Figure 1. The standard deviation (STD) of the simulated DSR and PAR 

values with selected atmosphere profiles is 22 Wm
−2

 and 2.2 Wm
−2

, respectively. The large STD 

of the DSR is caused by the Arctic winter profiles; the STD is reduced to 7Wm
−2

 when these 

atmosphere profiles are excluded. Thus, we can conclude that the DSR and PAR simulations are 

not sensitive to the atmosphere profiles for this algorithm. 

 

Figure 1. Sensitivity of PAR and DSR estimates to atmosphere profiles. The atmospheric 

condition is represented by a mid-latitude winter atmosphere with a rural aerosol type. Other 

input atmospheric variables are set as constants (solar zenith angle, 0°; visibility, 90 km; surface 

albedo, 0.2; cloud extinction coefficient, 1 km
− 1

). MLW, MLS, AW, AS, and 1976US represent 

the mid-latitude winter, mid-latitude summer, Arctic winter, Arctic summer, and 1976 US 

standard atmosphere profiles, respectively.  

The sensitivity experiments used to determine the dependence of DSR and PAR on the 

absorption of water vapor and ozone   are shown in Figure 2 at mid-latitude summer atmospheric 

profiles using a rural aerosol model under cloud-free conditions and a visibility of 90 km, which 

is considered a very clear atmospheric condition. The other atmospheric parameters are set as 

constants in MODTRAN. As shown in Figure 2, the DSR and PAR estimates vary by 

approximately 30 Wm
− 2

 and 20 Wm
− 2

, respectively, at the surface with the increasing ozone 

from 0.0 to 0.8 atm-cm. However, the amount of ozone does not change significantly under most 

conditions. Under other relatively hazy/cloudy air conditions, the influence of the ozone level is 

smaller. Thus, ozone is set as a constant in the simulation, and the effects of ozone are not 

corrected in our algorithm. The effects of water vapor on the estimation of DSR and PAR are 

also shown in Figure 2. Water vapor has a significant effect on DSR but is insignificant in terms 
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of the PAR calculation because the absorption of water vapor occurs primarily in the infrared 

band (Liu et al., 2008). Therefore, a simple water vapor correction function is applied to the DSR 

product. 

 

Figure 2. Sensitivity of (a) DSR and (b) PAR to variations in the amounts of ozone and water 

vapor. The atmospheric condition is represented by a mid-latitude summer atmosphere with a 

rural aerosol type. Other input atmospheric variables are set as constants (water vapor amount, 

2.0 gm/m
2
; visibility, 90 km; albedo, 0.20). 

The effects of surface elevation on DSR and PAR are also important and cannot be ignored, and 

there are many published reports on this topic (Dubayah 1992). Surface elevation effects are a 

dimension considered in the look-up table in our algorithm. The variations in the DSR and PAR 

estimates with changes in the surface elevation are described in Figure 3. We conclude that the 

influences of surface altitudes on DSR and PAR are significant under both cloudy conditions and 

cloud-free conditions and cannot be neglected. The surface elevation may cause an error of up to 

100 Wm
− 2

 and is a significant source of error in DSR and PAR estimation. For example, this 

effect is the most likely reason that a number of current radiation products have large errors over 

the Tibetan Plateau. 

To evaluate the effects of aerosol models on DSR and PAR simulations using MODTRAN, we 

select four basic aerosol modes to represent atmospheric turbidity in MODTRAN. The 

sensitivities of DSR and PAR to selected aerosol modes (rural, maritime, urban, and tropospheric) 

under cloud-free conditions with 23 km of visibility are shown in Figure 4; this comparison 

shows that DSR and PAR have similar sensitivities to the various aerosol modes. In addition, the 

rural, maritime, and tropospheric aerosol modes do not have a significant influence on DSR and 

PAR, whereas the urban aerosol mode does have an effect. The maritime and urban aerosol 

modes affect the largest difference, reaching approximately 60 and 29 Wm
− 2

 for DSR and PAR, 
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respectively, due to the strong absorption of solar radiation by urban aerosols. These results are 

consistent with the findings of Lu et al. (2010). The retrieval of DSR and PAR is affected by the 

distinct characteristics and size distributions of different aerosol modes under cloud-free 

conditions, especially in highly polluted regions (Wang et al., 2010). However, the influences of 

the aerosol modes on the estimation of solar radiation at the surface are not implemented in this 

algorithm because the aerosol influences are insignificant under cloudy conditions and 

significant under clear-sky conditions. 

 

Figure 3.  Sensitivity of (a) DSR and (b) PAR at the surface to the surface altitude under 

different atmosphere conditions (100 km visibility, 5 km visibility, 1 km
− 1

 cloud extinction, and 

7 km
− 1

 cloud extinction of mid-latitude summer atmosphere with a rural aerosol type). 

 

Figure 4. Sensitivity of (a) PAR and (b) DSR to aerosol modes under different solar zenith 

angles. The atmospheric condition is represented by a mid-latitude summer atmosphere. Other 

input atmospheric variables are set as constants (water vapor, 2.0 gm/m
2
; visibility, 23 km; 

albedo, 0.20). 
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Similarly, six cloud types (including cumulus, altostratus, stratus, stratocumulus, nimbostratus, 

and cirrus) were chosen in order to evaluate their effects on DSR and PAR simulations using 

MODTRAN. The sensitivities of DSR and PAR to cloud types are shown in Figure 5; this 

comparison shows that DSR and PAR have similar sensitivities to the various cloud types. The 

clouds of cumulus, stratus, stratocumulus, nimbostratus, and cirrus generate similar values of 

DSR and PAR, whereas the altostratus cloud results in slightly smaller values of DSR and PAR. 

Even for altostratus, the difference is only about 30 W/m
2
. The simulation suggests that the cloud 

types do not lead to significant uncertainty in estimating incident shortwave radiative fluxes. 

These results are consistent with the findings of Liang et al. (2006) on PAR and Kim and Liang 

(2010) on net shortwave radiation. Thus, the influences of the cloud types on the estimation of 

solar radiation at the surface are not implemented in this algorithm and a single cloud type was 

used in establishing LUTs. 

 

Figure 5. Sensitivity of (a) PAR and (b) DSR to cloud types under different solar zenith angles. 

Other input atmospheric variables are set as constants (cloud optical depth, 1.5; water vapor, 3.0 

gm/m
2
; albedo, 0.10). 

2.6 Product generation 

Data production will use both MODIS Terra and Aqua data. MCD18A1 and MCD18A2 are 

gridded L3 products in MODIS sinusoidal map projection. The instantaneous values of DSR and 

PAR corresponding to MODIS overpass time can be directly estimated using the 

abovementioned LUT approach. These instantaneous results are saved as one data layer of 

MCD18A1 and MCD18A2 files. 

To better meet users’ requirements, values of DSR and PAR are also retrieved every 3 hour at 

GMT 0:00, 3:00, 6:00, 9:00, 12:00, 15:00, 18:00, and 21:00. The DSR and PAR at the 3-hour 

intervals are estimated using the visibility index of the closest MODIS overpass time. This 

interpolation method assumes that the atmospheric condition varies only slightly during a given 

period. With the visibility index, DSR and PAR can be estimated using Eq (2). To obtain 

parameters of Eq (2) from the LUTs, the value of solar zenith angle is also needed. 
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Figure 6. Global maps of 3-hourly DSR on July 1 2004. The eight 3-hour maps are for GMT 

0:00, 3:00, 6:00, 9:00, 12:00, 15:00, 18:00, and 21:00 respectively. Data over the ocean were not 

retrieved.  
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Given the latitude  , we can calculate solar zenith angle   for GMT t  used in the production 

from the following formula: 

)]180
12

12
cos(coscossinarccos[sin)(




t
t  ,     (10) 

where  is Earth declination angle, which can be calculated from day of year (DOY) as: 

.       (11) 

2.7 Product description 

The DSR and PAR products are available in two separate datasets: MCD18A1 (DSR) and 

MCD18A2 (PAR). MCD18A1 and MCD18A2 are gridded L3 products in MODIS sinusoidal 

map projection with 5km resolution. One product file is produced for one day over one MODIS 

sinusoidal land tile. Names of MCD18A1 and MCD18A2 follow the file naming convention of 

standard MODIS products. 

MCD18A1 and MCD18A2 files are archived in Hierarchical Data Format V4 - Earth Observing 

System (HDF-EOS) format files. Each file contains global attributes (metadata) and scientific 

data sets (SDSs, data layers). Each file contains two major types of scientific data sets: 

instantaneous DSR/PAR array for each individual MODIS overpass and 3-hour DSR/PAR array. 

The 3-hour data are available at GMT 0:00, 3:00, 6:00, 9:00, 12:00, 15:00, 18:00, and 21:00. An 

example of global maps of 3-hourly DSR product is displayed in Figure 6. It shows the day times 

with large amounts of solar radiation moving from the east to the west. 

3. Validation 

3.1 Algorithm validation 

The detailed results can be found in our earlier publications (Liang et al., 2006, 2007). The 

validation experiments were conducted using ground measurements of incident PAR at six 

FLUXNET sites (Fort Peck, Montana; Lost Creek, Wisconsin; Oak Ridge, Tennessee; Walker 

Branch, Tennessee; Santa Rem, Brazil; and Black Hills, South Dakota) from 2002-2004. For 

each site, a 3km * 3km window (9 pixels) of the MODIS TOA radiance (MOD02) and angular 

values were extracted from the MODIS datasets ordered from the EOS Gateway. The ground 

measurements collected every half-hour or one hour were compared with the retrieved values. 

The measurement values closest to the time of MODIS data acquisition were used to compare 

with the value of the central pixel in the extracted 9-pixel window without any interpolation.  

Figure 7 shows the validation results at six FLUXNET sites. The correlation coefficient between 

MODIS instantaneous PAR and ground-based measurements is 0.95. MODIS instantaneous PAR 

has a bias of 32.5  mol s
-1

 m
-2

 (2.9% in relative value), and an RMSE of 194.8  mol s
-1

 m
-2

 

)
365

283
360sin(45.23

DOY

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(17.5% in relative value). Our latest study demonstrated that aggregating MODIS products 

spatially and ground measurements temporally can produce much better results.  

 

Figure 7.  Validation of MODIS-derived instantaneous PAR data at six FLUXNET sites (Fort 

Peck, Montana; Lost Creek, Wisconsin; Oak Ridge, Tennessee; Walker Branch, Tennessee; 

Santa Rem, Brazil; and Black Hills, South Dakota) from 2002-2004. For each site, a 3km * 3km 

window (9 pixels) of the MODIS TOA radiance (MOD02) and angular values were extracted 

from the MODIS datasets ordered from the EOS Gateway. The ground measurements collected 

every half-hour or one hour were compared with the retrieved values.. The solid line is the 1:1 

line, the dashed line is the best fit line based on least squares regression. 

Additional validation results summarized in Table 3 demonstrate that the DSR and PAR 

retrievals are accurate under all sky conditions (Zhang et al. 2014). The overall coefficient of 

determination at these sites is 0.83 and 0.84 for DSR and PAR, respectively. The bias values for 

DSP and PAR are − 6.5 Wm
− 2

 and 5.0 Wm
− 2

, respectively, and the RMSE values are 115.0 

Wm
− 2

 and 49.0 Wm
− 2

, respectively. As shown in Table 3, the validation results at the 

SURFRAD sites are better than those at other sites except the Desert Rock site, which may be 

due to the time scales released by the data centers. The SURFRAD sites released the 

measurements every 3 min and are always believed to have better quality; however, a 30 minute 

average was used for the CarbonEuropeIP and COIIRAS sites. The validation results at the 

Desert Rock site show the maximum RMSE of 55 Wm
− 2

. To obtain more insight in to the 

discrepancies at Desert Rock, we further investigated the details of this site. The Desert Rock 

(36.63°N, 116.02°W) site at SURFRAD, which is located 65 miles northwest of Las Vegas, has 

an elevation higher than 1000 m. Its land surface is covered by fine rock and scattered desert 

shrubs. We speculate that the systematic errors are primarily due to the climatic conditions, the 
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altitude, and the absolute accuracy of the pyrometer at this site. The absolute accuracy of 

pyrometers has never been better than 5% or 10 Wm
− 2

. 

Table 3. A summary of the statistics of the comparison of the ground measurements and the 

estimated DSR and PAR at the 34 sites. The DSR and PAR results retrieved from MODIS data 

were compared with the 30 min average of the field measurements of DSR and PAR to reduce 

the possible mismatch of space and time at these selected sites. The accuracy was assessed by 

applying three widely used statistical estimators (coefficient of determination (R
2
), root mean 

square error (RMSE), and mean bias error (BIAS)). The unit for bias and RMSE is W/m
2
 

Site DSR PAR 

R
2
 Bias RMSE R

2
 Bias RMSE 

Bondville 0.86 20 100 0.86 4.6 45 

FortPeck 0.82 5.5 111 0.82 1.6 46 

Goodwin Creek 0.92 1.7 86 0.91 4.2 38 

Penn State 0.87 12 100 0.86 9.4 44 

Sioux Falls 0.86 14 102 0.86 2.4 43 

Boulder 0.77 -8.7 140 0.78 -7.6 58 

Desert Rock 0.88 -55 119 0.89 -30 51 

ARM-SGP Main 0.9 -7.73 93 0.88 16 45 

Audubon Research Ranch 0.86 -42 120 0.87 24 56 

Brookings 0.83 -9 114 0.84 33 55 

Fermi Agricultural 0.77 55 145 0.78 2 61 

Flagstaff Managed Forest 0.78 -26 150 0.77 -19 68 

Flagstaff UnManaged 

Forest 

0.86 -24 110 0.88 -4 44 

Neustift 0.8 -48 140 0.83 -5 48 

Lonzee 0.6 2 131 0.74 9 48 

Vielsalm 0.75 12 107 0.79 22 47 

Laegeren 0.77 -41 146 0.83 -4 49 

Oensingen2_crop 0.77 -10 129 0.86 -9 47 

Bily Kriz-Beskidy 

Mountains 

0.77 17 121 0.83 24 48 

Bily Kriz grassland 0.79 -3 119 0.82 25 49 

CZECHWET 0.88 -17 84 0.86 11 41 

Moldova 0.89 34 97 0.85 7 47 

Alta_Floresta 0.87 2 108    

CEILAP-BA 0.82 -23 123    

Kherlenbayan Ulaan 0.9 31 94    

Arou 0.83 -23 119    

Changwu 0.82 24 111    

Dayekou 0.84 -20 133    
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Dingxi 0.85 16 101    

Dongsu 0.85 -44 115 0.82 -5 48 

Tongyu 0.81 -8 106    

Yingke 0.85 -31 117    

Yuzhong 0.8 -22 131    

Zhangye 0.87 -6 93    

Total 0.83 -6.5 115 0.84 5 49 

3.2 Product validation 

With the availability of the data products operationally generated from MODAPS, we are able to 

assess the data quality of the actual products. Field measurements of DSR and PAR at the seven 

SURFRAD stations in 2004 were used in product validation.  

The preliminary validation results suggest that the new MODIS DSR and PAR 3-hour products 

are reliable and highly accurate (Figure 8 and Table 4). DSR and PAR have the overall 

coefficients of determination of 0.91 and 0.92 respectively. MCD18A1 has a RMSE of 90 W/m
2
, 

bias of 17 W/m
2
. MCD18A2 has a RMSE of 39 W/m

2
, bias of 9 W/m

2
. The results by sites can 

be found in Table 4. All the seven SURFRAC sites show slight overestimation with positive 

biases ranging from 3.8-22 W/m
2 
for DSR and -0.5-14 W/m

2
 for PAR. RMSE of estimating DSR 

varies from the smallest value of 72 W/m
2
 at Desert Rock to the largest error of 106 W/m

2
 at 

Boulder. RMSE of estimating PAR varies from the smallest value of 28 W/m
2
 at Desert Rock to 

the largest error of 44 W/m
2
 at Bolder.  

 

Figure 8. Validation results of MCD18A1 and MCD18A2 3-hour products using the field 

measurements of DSR and PAR collected at SURFRAD stations. The MODIS DSR and PAR 

products over all the seven SURFRAD stations during 2004 were used in comparison. Data 

averaged from the MODIS 4 by 4 pixels centered the SURFRAD stations were compared against 

with mean values of 1-minute field measurements during a time window of 30 minutes around 

the MODIS product time. 
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Table 4. Summary statistics of validating MCD18A1 and MCD18A2 3-hour products using the 

field measurements of DSR and PAR collected at SURFRAD stations. The MODIS DSR and 

PAR products over all the seven SURFRAD stations during 2004 were used in comparison. Data 

averaged from the MODIS 4 by 4 pixels centered the SURFRAD stations were compared against 

with mean values of 1-minute field measurements during a time window of 30 minutes around 

the MODIS product time. The unit for both bias and RMSE is W/m
2
. 

Site DSR (MCD18A1) PAR (MCD18A2) 

R
2
 Bias RMSE R

2
 Bias RMSE 

Bondville 0.89 21 95 0.90 13 43 

FortPeck 0.92 22 82 0.93 9.3 33 

Goodwin Creek 0.91 20 88 0.91 14 42 

Penn State 0.89 16 91 0.90 12 40 

Sioux Falls 0.90 23 92 0.92 10 38 

Boulder 0.88 11 106 0.89 5.1 44 

Desert Rock 0.96 3.8 72 0.97 -0.5 28 

4. Constraints, limitations, and assumptions 

Data from multiple geostationary satellites were initially proposed to be used as the ancillary 

input to MODIS data to improve temporal coverage at low latitudes. However, the existing 

MODAPS system uses MODIS data as the main satellite input, and we had difficulty 

incorporating geostationary satellite data into the production. For operational purposes, we have 

modified our codes and deactivated the module of processing geostationary data. The current 

operational codes use only Terra and Aqua MODIS data as the main input satellite data. The 

geostationary modules can be activated in the future when geostationary satellite data are 

available through the MODAPS system. 

The LUT based approach uses MODIS TOA reflectance data of the blue band as the main input. 

It does not require various atmospheric parameters and thus can avoid errors caused by 

unavailability and uncertainties of these parameters. However, such simplification also has its 

limitations under some circumstances. The limited spectral information used in the LUT 

approach may translate into substantial uncertainties in complex cloudy cases. We have 

developed alternative retrieval approaches based on parameterization and optimization schemes. 

We also have developed a framework of product integration. An integrated product that 

combines results from the LUT method, parameterization scheme and optimization approach can 

be used to address such issues.  
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